Atomic Number | 4 |
---|---|
Atomic Weight | 9.0121831 |
Mass Number | 9 |
Group | 2 |
---|---|
Period | 2 |
Block | s |
Protons | 4 p+ |
---|---|
Neutrons | 5 n0 |
Electrons | 4 e- |
Atomic Radius | 105 pm
|
---|---|
Molar Volume | 5 cm³/mol
|
Covalent Radius | 102 pm
|
Metallic Radius | 89 pm
|
Ionic Radius | 16 pm
|
Crystal Radius | 30 pm
|
Van der Waals Radius | 153 pm
|
Density | 1.85 g/cm³
|
Energy | |
Proton Affinity | |
Electron Affinity | -2.4 eV/particle
|
Ionization Energy | 9.322699 eV/particle
|
Heat of Vaporization | 309 kJ/mol
|
Heat of Fusion | 12.21 kJ/mol
|
Heat of Formation | 324 kJ/mol
|
Electrons | |
Electron Shells | 2, 2 |
Valence Electrons | 2 |
Electron Configuration | [He] 2s2 |
Oxidation States | 0, 1, 2 |
Electronegativity | 1.57
|
Electrophilicity | 0.5110145863657444 eV/particle
|
Phases | |
Phase | Solid |
Gas Phase | |
Boiling Point | 2,741.15 K
|
Melting Point | 1,560.15 K
|
Critical Pressure | |
Critical Temperature | 5,205.15 K
|
Triple Point | |
Visual | |
Color | Slate Gray
|
Appearance | white-gray metallic |
Refractive Index | |
Thermodynamic Properties | |
Thermal Conductivity | 201 W/(m K)
|
Thermal Expansion | 0.0000113 1/K
|
Molar Heat Capacity | 16.443 J/(mol K)
|
Specific Heat Capacity | 1.825 J/(g⋅K)
|
Heat Capacity Ratio (Adiabatic Index) | |
Electrical Properties | |
Type | Conductor |
Electrical Conductivity | 25 MS/m
|
Electrical Resistivity | 0.00000003999999999998 m Ω
|
Superconducting Point | 0.026 K
|
Magnetism | |
Type | diamagnetic |
Magnetic Susceptibility (Mass) | -0.0000000126 m³/Kg
|
Magnetic Susceptibility (Molar) | -0.0000000001136 m³/mol
|
Magnetic Susceptibility (Volume) | -0.00002328
|
Magnetic Ordering | |
Curie Point | |
Neel Point | |
Structure | |
Crystal Structure | Simple Hexagonal (HEX) |
Lattice Constant | 2.29 Å
|
Lattice Angles | π/2, π/2, 2 π/3 |
Mechanical Properties | |
Hardness | 5.5 MPa
|
Bulk Modulus | 130 GPa
|
Shear Modulus | 132 GPa
|
Young Modulus | 287 GPa
|
Poisson Ratio | 0.032
|
Speed of Sound | 13,000 m/s
|
Classification | |
Category | Alkaline earth metals, Alkaline earth metals |
CAS Group | IIA |
IUPAC Group | IIA |
Glawe Number | 77 |
Mendeleev Number | 75 |
Pettifor Number | 77 |
Geochemical Class | alkaline earth metal |
Goldschmidt Class | litophile |
Other | |
Gas Basicity | |
Dipole Polarizability | |
C6 Dispersion Coefficient | 227 a₀
|
Allotropes | |
Neutron Cross Section | 0.0092
|
Neutron Mass Absorption | 0.00003
|
Quantum Numbers | 1S0 |
Space Group | 194 (P63/mmc) |
Stable Isotopes | 1 |
---|---|
Unstable Isotopes | 11 |
Radioactive Isotopes | 11 |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 5 |
G-Factor | |
Half Life | |
Spin | 1/2 |
Quadrupole Moment | 0
|
Discovery Year | |
Parity | + |
Decay Mode | Intensity |
---|---|
p (proton emission) | % |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 6 |
G-Factor | 0
|
Half Life | 5 ± 0.3 zs
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 1958 |
Parity | + |
Decay Mode | Intensity |
---|---|
2p (2-proton emission) | 100% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 7 |
G-Factor | |
Half Life | 53.22 ± 0.06 d
|
Spin | 3/2 |
Quadrupole Moment | |
Discovery Year | 1938 |
Parity | - |
Decay Mode | Intensity |
---|---|
ϵ (electron capture) | 100% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 8 |
G-Factor | 0
|
Half Life | 81.9 ± 3.7 as
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 1932 |
Parity | + |
Decay Mode | Intensity |
---|---|
α (α emission) | 100% |
Abundance | 100
|
---|---|
Relative Atomic Mass | |
Mass Number | 9 |
G-Factor | -0.78495333333333 ± 0.0000033333333333333
|
Half Life | |
Spin | 3/2 |
Quadrupole Moment | 0.0529 ± 0.0004
|
Discovery Year | 1921 |
Parity | - |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 10 |
G-Factor | 0
|
Half Life | 1.387 ± 0.012 My
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 1935 |
Parity | + |
Decay Mode | Intensity |
---|---|
β− (β− decay) | 100% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 11 |
G-Factor | -3.3632 ± 0.0016
|
Half Life | 13.76 ± 0.07 s
|
Spin | 1/2 |
Quadrupole Moment | 0
|
Discovery Year | 1958 |
Parity | + |
Decay Mode | Intensity |
---|---|
β− (β− decay) | 100% |
β−α (β−-delayed α emission) | 3.3% |
B-p | 0.0013% |
β− n (β−-delayed neutron emission) | % |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 12 |
G-Factor | 0
|
Half Life | 21.46 ± 0.05 ms
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 1966 |
Parity | + |
Decay Mode | Intensity |
---|---|
β− (β− decay) | 100% |
β− n (β−-delayed neutron emission) | 0.5% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 13 |
G-Factor | |
Half Life | 1 ± 0.7 zs
|
Spin | 1/2 |
Quadrupole Moment | 0
|
Discovery Year | 1983 |
Parity | - |
Decay Mode | Intensity |
---|---|
n (neutron emission) | % |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 14 |
G-Factor | 0
|
Half Life | 4.53 ± 0.27 ms
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 1973 |
Parity | + |
Decay Mode | Intensity |
---|---|
β− (β− decay) | 100% |
β− n (β−-delayed neutron emission) | 86% |
2n (2-neutron emission) | 5% |
β− t (β−-delayed triton emission) | 0.02% |
β−α (β−-delayed α emission) | 0.004% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 15 |
G-Factor | |
Half Life | 790 ± 270 ys
|
Spin | 5/2 |
Quadrupole Moment | |
Discovery Year | 2013 |
Parity | + |
Decay Mode | Intensity |
---|---|
n (neutron emission) | 100% |
Abundance | Radioactive ☢️ |
---|---|
Relative Atomic Mass | |
Mass Number | 16 |
G-Factor | 0
|
Half Life | 650 ± 130 ys
|
Spin | 0 |
Quadrupole Moment | 0
|
Discovery Year | 2012 |
Parity | + |
Decay Mode | Intensity |
---|---|
2n (2-neutron emission) | 100% |
Louis-Nicolas Vauquelin discovered beryllium in the oxide form in both beryl and emeralds in 1798. Friedrich Wöhler and Antoine Bussy independently isolated beryllium in 1828 by the chemical reaction of metallic potassium with beryllium chloride. The first commercially-successful process for producing beryllium was developed in 1932 by Alfred Stock and Hans Goldschmidt. From the Greek word beryllos, beryl
Discoverers | Fredrich Wöhler, A.A.Bussy |
---|---|
Discovery Location | Germany/France |
Discovery Year | 1798 |
Etymology (Name Origin) | Greek: beryllos, "beryl" (a mineral). |
Pronunciation | beh-RIL-i-em (English) |
Found mostly in minerals like beryl [AlBe3(Si6O18)] and chrysoberyl (Al2BeO4). Pure beryllium is obtained by chemically reducing beryl mineral. Also by electrolysis of beryllium chloride.
Abundance | |
---|---|
Abundance in Earth's crust | 2.8 mg/kg
|
Abundance in Oceans | 0.0000056 mg/L
|
Abundance in Human Body | 0.00000004 %
|
Abundance in Meteor | 0.0000029 %
|
Abundance in Sun | 0.00000001 %
|
Abundance in Universe | 0.0000001 %
|
1 | s | 0.3152 |
2 | s | 2.088 |