Titanium

Titanium (Ti)

White metallic transition element. Occurs in numerous minerals. Used in strong, light corrosion-resistant alloys. Forms a passive oxide coating when exposed to air. First discovered by Gregor in 1789.
Atomic Number22
Atomic Weight47.867
Mass Number48
Group4
Period4
Blockd
Protons22 p+
Neutrons26 n0
Electrons22 e-
Titan-crystal bar.JPG Animated Bohr Model of Ti (Titanium) Enhanced Bohr Model of Ti (Titanium) Bohr Model: Ti (Titanium) Orbital Diagram of Ti (Titanium)

Properties

Atomic Radius
140 pm
Molar Volume
Covalent Radius
136 pm
Metallic Radius
132 pm
Ionic Radius
86 pm
Crystal Radius
100 pm
Van der Waals Radius
211 pm
Density
4.506 g/cm³
Energy
Proton Affinity
876 kJ/mol
Electron Affinity
Ionization Energy
6.82812 eV/particle
Heat of Vaporization
422.6 kJ/mol
Heat of Fusion
18.8 kJ/mol
Heat of Formation
473 kJ/mol
Electrons
Electron Shells2, 8, 10, 2
Valence Electrons4
Electron Configuration[Ar] 3d2 4s2
Oxidation States-2, -1, 0, 1, 2, 3, 4
Electronegativity
1.54
Electrophilicity
0.8836023565738941 eV/particle
Phases
PhaseSolid
Gas Phase
Boiling Point
3,560.15 K
Melting Point
1,943.15 K
Critical Pressure
Critical Temperature
Triple Point
Visual
Color
Silver
Appearancesilvery grey-white metallic
Refractive Index
Thermodynamic Properties
Thermal Conductivity
21.9 W/(m K)
Thermal Expansion
0.0000086 1/K
Molar Heat Capacity
25.06 J/(mol K)
Specific Heat Capacity
0.523 J/(g⋅K)
Heat Capacity Ratio (Adiabatic Index)
Electrical Properties
TypeConductor
Electrical Conductivity
2.5 MS/m
Electrical Resistivity
0.0000004 m Ω
Superconducting Point
0.4 K
Magnetism
Typeparamagnetic
Magnetic Susceptibility (Mass)
0.0000000401 m³/Kg
Magnetic Susceptibility (Molar)
0.000000001919 m³/mol
Magnetic Susceptibility (Volume)
0.0001807
Magnetic Ordering
Curie Point
Neel Point
Structure
Crystal StructureSimple Hexagonal (HEX)
Lattice Constant
2.95 Å
Lattice Anglesπ/2, π/2, 2 π/3
Mechanical Properties
Hardness
6 MPa
Bulk Modulus
110 GPa
Shear Modulus
44 GPa
Young Modulus
116 GPa
Poisson Ratio
0.32
Speed of Sound
4,140 m/s
Classification
CategoryTransition metals, Transition metals
CAS GroupIVA
IUPAC GroupIVB
Glawe Number51
Mendeleev Number43
Pettifor Number51
Geochemical Classfirst series transition metal
Goldschmidt Classlitophile
Other
Gas Basicity
853.7 kJ/mol
Dipole Polarizability
100 ± 10 a₀
C6 Dispersion Coefficient
1,044 a₀
Allotropes
Neutron Cross Section
6.1
Neutron Mass Absorption
0.0044
Quantum Numbers3F2
Space Group194 (P63/mmc)

Isotopes of Titanium

Stable Isotopes5
Unstable Isotopes24
Radioactive Isotopes22

37Ti

Abundance
Relative Atomic Mass
37.027021 ± 0.000429 Da
Mass Number37
G-Factor
Half Life
Spin1/2
Quadrupole Moment
0
Discovery Year
Parity+

37Ti Decay Modes
Decay ModeIntensity
p (proton emission)%

38Ti

Abundance
Relative Atomic Mass
38.012206 ± 0.000322 Da
Mass Number38
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year
Parity+

38Ti Decay Modes
Decay ModeIntensity
2p (2-proton emission)%

39Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
39.002684 ± 0.000215 Da
Mass Number39
G-Factor
Half Life
28.5 ± 0.9 ms
Spin3/2
Quadrupole Moment
Discovery Year1990
Parity+

39Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%
β+ p (β+-delayed proton emission)93.7%
2p (2-proton emission)%

40Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
39.990345146 ± 0.000073262 Da
Mass Number40
G-Factor
0
Half Life
52.4 ± 0.3 ms
Spin0
Quadrupole Moment
0
Discovery Year1982
Parity+

40Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%
β+ p (β+-delayed proton emission)95.8%

41Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
40.983148 ± 0.00003 Da
Mass Number41
G-Factor
Half Life
81.9 ± 0.5 ms
Spin3/2
Quadrupole Moment
Discovery Year1964
Parity+

41Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%
β+ p (β+-delayed proton emission)91.1%

42Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
41.973049369 ± 0.000000289 Da
Mass Number42
G-Factor
0
Half Life
208.3 ± 0.4 ms
Spin0
Quadrupole Moment
0
Discovery Year1964
Parity+

42Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%

43Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
42.96852842 ± 0.000006139 Da
Mass Number43
G-Factor
0.24285714285714 ± 0.0057142857142857
Half Life
509 ± 5 ms
Spin7/2
Quadrupole Moment
Discovery Year1948
Parity-

43Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%
β+ p (β+-delayed proton emission)%

44Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
43.959689936 ± 0.000000751 Da
Mass Number44
G-Factor
0
Half Life
59.1 ± 0.3 y
Spin0
Quadrupole Moment
0
Discovery Year1954
Parity+

44Ti Decay Modes
Decay ModeIntensity
ϵ (electron capture)100%

45Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
44.958120758 ± 0.000000897 Da
Mass Number45
G-Factor
0.027142857142857 ± 0.00057142857142857
Half Life
184.8 ± 0.5 m
Spin7/2
Quadrupole Moment
0.015 ± 0.015
Discovery Year1941
Parity-

45Ti Decay Modes
Decay ModeIntensity
β+ (β+ decay; β+ = ϵ + e+)100%

46Ti

Abundance
8.25 ± 0.03
Relative Atomic Mass
45.952626356 ± 0.000000097 Da
Mass Number46
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year1934
Parity+

47Ti

Abundance
7.44 ± 0.02
Relative Atomic Mass
46.951757491 ± 0.000000085 Da
Mass Number47
G-Factor
Half Life
Spin5/2
Quadrupole Moment
0.302 ± 0.01
Discovery Year1934
Parity-

48Ti

Abundance
73.72 ± 0.03
Relative Atomic Mass
47.947940677 ± 0.000000079 Da
Mass Number48
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year1923
Parity+

49Ti

Abundance
5.41 ± 0.02
Relative Atomic Mass
48.947864391 ± 0.000000084 Da
Mass Number49
G-Factor
Half Life
Spin7/2
Quadrupole Moment
0.247 ± 0.011
Discovery Year1934
Parity-

50Ti

Abundance
5.18 ± 0.02
Relative Atomic Mass
49.944785622 ± 0.000000088 Da
Mass Number50
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year1934
Parity+

51Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
50.946609468 ± 0.000000519 Da
Mass Number51
G-Factor
Half Life
5.76 ± 0.01 m
Spin3/2
Quadrupole Moment
Discovery Year1947
Parity-

51Ti Decay Modes
Decay ModeIntensity
β (β decay)100%

52Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
51.946883509 ± 0.000002948 Da
Mass Number52
G-Factor
0
Half Life
1.7 ± 0.1 m
Spin0
Quadrupole Moment
0
Discovery Year1966
Parity+

52Ti Decay Modes
Decay ModeIntensity
β (β decay)100%

53Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
52.949670714 ± 0.0000031 Da
Mass Number53
G-Factor
Half Life
32.7 ± 0.9 s
Spin3/2
Quadrupole Moment
Discovery Year1977
Parity

53Ti Decay Modes
Decay ModeIntensity
β (β decay)100%

54Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
53.950892 ± 0.000017 Da
Mass Number54
G-Factor
0
Half Life
2.1 ± 1 s
Spin0
Quadrupole Moment
0
Discovery Year1980
Parity+

54Ti Decay Modes
Decay ModeIntensity
β (β decay)100%

55Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
54.955091 ± 0.000031 Da
Mass Number55
G-Factor
Half Life
1.3 ± 0.1 s
Spin1/2
Quadrupole Moment
0
Discovery Year1980
Parity

55Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%

56Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
55.957677675 ± 0.000107569 Da
Mass Number56
G-Factor
0
Half Life
200 ± 5 ms
Spin0
Quadrupole Moment
0
Discovery Year1980
Parity+

56Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%

57Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
56.963068098 ± 0.00022102 Da
Mass Number57
G-Factor
Half Life
95 ± 8 ms
Spin5/2
Quadrupole Moment
Discovery Year1985
Parity-

57Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%

58Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
57.966808519 ± 0.000196823 Da
Mass Number58
G-Factor
0
Half Life
55 ± 6 ms
Spin0
Quadrupole Moment
0
Discovery Year1992
Parity+

58Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%

59Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
58.972217 ± 0.000322 Da
Mass Number59
G-Factor
Half Life
28.5 ± 1.9 ms
Spin5/2
Quadrupole Moment
Discovery Year1997
Parity-

59Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

60Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
59.976275 ± 0.000258 Da
Mass Number60
G-Factor
0
Half Life
22.2 ± 1.6 ms
Spin0
Quadrupole Moment
0
Discovery Year1997
Parity+

60Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

61Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
60.982426 ± 0.000322 Da
Mass Number61
G-Factor
Half Life
15 ± 4 ms
Spin1/2
Quadrupole Moment
0
Discovery Year1997
Parity-

61Ti Decay Modes
Decay ModeIntensity
β (β decay)100%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

62Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
61.986903 ± 0.000429 Da
Mass Number62
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year2009
Parity+

62Ti Decay Modes
Decay ModeIntensity
β (β decay)%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

63Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
62.993709 ± 0.000537 Da
Mass Number63
G-Factor
Half Life
Spin1/2
Quadrupole Moment
0
Discovery Year2009
Parity-

63Ti Decay Modes
Decay ModeIntensity
β (β decay)%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

64Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
63.998411 ± 0.000644 Da
Mass Number64
G-Factor
0
Half Life
Spin0
Quadrupole Moment
0
Discovery Year2013
Parity+

64Ti Decay Modes
Decay ModeIntensity
β (β decay)%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

65Ti

AbundanceRadioactive ☢️
Relative Atomic Mass
65.005593 ± 0.000751 Da
Mass Number65
G-Factor
Half Life
Spin1/2
Quadrupole Moment
0
Discovery Year
Parity-

65Ti Decay Modes
Decay ModeIntensity
β (β decay)%
β n (β-delayed neutron emission)%
2n (2-neutron emission)%

History

William Gregor found the oxide of titanium in ilmenite in 1791. Martin Heinrich Klaproth independently discovered the element in rutile in 1795 and named it. The pure metallic form was only obtained in 1910 by Matthew A. Hunter. In 1936, the Kroll Process made the commercial production of titanium possible. From the Latin titans, the first sons of the Earth, Greek mythology

DiscoverersWilliam Gregor
Discovery LocationEngland
Discovery Year1791
Etymology (Name Origin)Greek: titanos (Titans).
Pronunciationtie-TAY-ni-em (English)
Titanium metal is considered to be non-toxic
Titanium is one of the few elements that burns in pure nitrogen gas

Uses

Titanium is used in steel as an alloying element to reduce grain size and as a deoxidizer, and in stainless steel to reduce carbon content. Titanium has potential use in desalination plants for converting sea water into fresh water. Titanium is used in several everyday products such as drill bits, bicycles, golf clubs, watches and laptop computers. Since it is strong and resists acids it is used in many alloys. Titanium dioxide (TiO2), a white pigment that covers surfaces very well, is used in paint, rubber, paper and many others.

Sources

Usually occurs in the minerals ilmenite (FeTiO3) or rutile (TiO2). Also in Titaniferous magnetite, titanite (CaTiSiO5), and iron ores. Pure metal produced by heating TiO2 with C and Cl2 to produce TiCl4 then heated with Mg gas in Ar atmosphere.

Abundance
Abundance in Earth's crust
5,650 mg/kg
Abundance in Oceans
0.001 mg/L
Abundance in Human Body
Abundance in Meteor
0.054 %
Abundance in Sun
0.0004 %
Abundance in Universe
0.0003 %

Nuclear Screening Constants

1s0.5591
2p3.9352
2s6.6234
3d13.8586
3p11.8963
3s10.9669
4s17.1832